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ABSTRACT

The deployment of smart grids and renewable energy dispeattiers motivates the development of forecasting teclesiqu
that take advantage of near real-time measurements @al&cim geographically distributed sensors. This papesrideess

a forecasting methodology that explores a set of differpatse structures for the vector autoregression (VAR) model
using the Least Absolute Shrinkage and Selection Opera8$0) framework. The alternating direction method of
multipliers is applied to fit the different VAR-LASSO varinand create a scalable forecasting method supported by
parallel computing and fast convergence, which can be ugegidiem operators and renewable power plant operators. A
test case with 66 wind power plants is used to show the impnewe in forecasting skill from exploring distributed spars
structures. The proposed solution outperformed the cdioreai autoregressive and vector autoregressive modeiseh

as a sparse-VAR model from the state of the art. Copyr@H000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Operating a power system with high integration levels ofdvpower is challenging and demands for a continuous
improvement of wind power forecast tools [1][2]. Furthemmothe participation of wind power in the electricity marke
also requires accurate forecasts in order to mitigate finhrisks associated to energy imbalances [3][4].

The recent advent of smart grid technologies will incredse rhonitoring capability of the electric power system
[5]. Furthermore, the investment in renewable energy dispaenters enables real-time acquisition of time series
measurements from wind power plants (WPP) [6]. The avditpluf the most recent WPP measurements improves the
forecast skill during the first lead-times, commonly caledy short-term horizon [7].

For this time horizon, it is generally established thatistiaal models are more accurate than physical modelsgwhil
for longer time horizons the most relevant inputs come froomidrical Weather Predictions (NWP) models [7]. Even
recent advances in physical models, such as the High ResolRapid Refresh (HRRR) model developed by U.S.
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Figure 1. Groups of models from the state of the art.

National Oceanic and Atmospheric Administration (NOAA)k autperformed by statistical models that use recent WPP
observations [8].

In the state of the art, a broad family of statistical mode¢savailable for thevery short-term horizon. Two examples
are the conditional parametric autoregression (AR) anohregwitching models that incorporate online observealloc
variables (i.e., wind speed and direction) to reduce thel\wiower forecast error for 10 min-ahead forecasting [9].tAao
example is the use of automatic self-tuning Kalman filteas thcorporate NWP information [10].

In this context, information from WPP time series distrégmlitn space can be used to improve the forecast skill of each
WPP. The first results were presented by Gneiting et al. forthaurs-ahead wind speed forecasting [11]. The authors
showed that a Regime-Switching Space-Time Diurnal modgltttkes advantage of temporal and spatial correlation from
geographically dispersed meteorological stations asitd#fpredictors can have a root mean square error (RMSEY®28.6
lower than the persistence forecasts. Expert knowledgesargirical results were used to select the predictors. I [12
two additional statistical models are proposed, Trigornoim®irection Diurnal model and Bivariate Skew-T model €Be
results were generalized by Tastu et al. by studying thespahporal propagation of wind power forecast errors [13]
The authors showed evidences of cross-correlation fumetioth significant dependency in lags of a few hours.

These works motivated the appearance of recent researcexiares information from neighboring WPP. Figure 1
groups the state of the art methods applied to wind power tagoay.

The first group consists of machine learning methods, suattifisial neural networks. To the authors’ knowledge, éher
is little research concerning the application of machirerag models to this problem. In [14] it is described a oalin
sparse Bayesian model based on warped Gaussian procesetatgeprobabilistic wind power forecasts. A sparsificatio
strategy is used to reduce the computational cost and thelrnradudes wind speed observations from nearby WPP and
NWP data. Also in this category, but applied to solar poweedasting, in [15] multilayer perceptron neural networks
are used to combine measurements of neighboring PV syséem$n [16], component-wise gradient boosting is used to
explore PV observations from a smart grid.

The following limitations were identified for this first grpu(a) a separated model is fitted to each location, which
increases the computational time; (b) the scalability efgblution decreases when the number of predictor incre@yes
with the exception of the sparse Bayesian model, the otfeerotiprovide a sparse vector of coefficients.

The second group consists of random fields. To the authoostletlge, the only work that explores this theory is from
Wytock and Kolter [17]. The model is based on sparse Gaussiaditional random field and uses a new second-order
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active set method to solve the problem. The main limitatidhe method is that it requires a copula transformation deor
to have a Gaussian marginal distributions, which might nbtesthe boundary problem of variables with limited support
(e.g., wind power between zero and rated power). Moreokiercomputational time for a solution with high accuracy is
around 160 min for a case-study with seven WPP [18].

The third group is related to classical time series theoastT et al. extended their previous work in [13] to the
multivariate framework [19], i.e. from an AR to a vector awgression (VAR) model. The VAR coefficients are allowed to
vary with external variables, average wind direction irsttese. The main limitation is a non-sparse matrix of coefiitsi
since feature selection is not performed. A similar methoglpwas applied in [20] to generate probabilistic foredzsted
on geographically distributed sensors. Also in in this c#se predictors are manually selected based on crosskatiore
analysis.

He et al. presents a two stages approach [21]:(1) offlindadgatmporal analysis carried out on historical data with
multiple finite-state Markov chains; (2) online forecagthy feeding a Markov chain with real-time measurements ef th
wind turbines. Similar to previous works, different spassectures of the spatial-temporal relations are not fedglored.
The same authors in [22] propose a different approach bas&#ABR model fitting with sparsity-constrained maximum
likelihood. The main limitation of this approach is that gparse coefficients are not automatically defined, insequrt
knowledge and partial correlation analysis are employed.

Aiming to generate forecasts on a large spatial scale, ergireds of locations, Dowell and Pinson proposed the sparse
VAR (sVAR) approach for 5 min-ahead forecasts [23]. The s\ABthod generates probabilistic forecasts based on the
logit-normal distribution (see [24]), whose mean is estedavith a VAR model and variance by a modified exponential
smoothing. A state-of-the-art technique from [25] is eryplib to fit a VAR model with a sparse coefficient matrix. The
work proposed in the present paper is closely related totA&snd provides the following original contributions:

1. Explores a set of different sparse structures for the Vdnéwork using the Least Absolute Shrinkage and
Selection Operator (LASSO) framework [26];

2. Applies the alternating direction method of multipliédMM) [27] to fit the different VAR-LASSO variants;

3. Proposes a scalable forecasting method based on pa@tihpluting, fast convergence optimization algorithm and
matrix calculations.

The proposed method will be compared with the sVAR approadkrims of advantages and limitations, applied to a
case-study with 66 WPP located in the same control areaoltldtbe stressed that the proposed approach is compatible
with previous works from the literature. For instance, ihda@e used for spatial-temporal correction of forecast srror
(see [13]), extended to conditional VAR (see [19]) or usedeaerate probabilistic forecasts based on the logit-nbrma
distribution (see [23]).

The paper is organized as follows. Section 2 presents tlerelift sparse structures for the VAR model. Section 3
describes the application of the ADMM method to fit the VAR rabid its different LASSO variants. The test case results
are presented in Section 4. Section 5 presents the conclasibfuture work.

2. SPARSE STRUCTURES FOR THE VAR MODEL

The VAR model allows a simultaneous forecast of the wind gaien in several neighboring sites combining time
series information. However, forecasting with VAR modelayntoe intractable for high dimensional data since the non-
sparse coefficients matrix grows quadratically with the hanof series included in the model. In order to overcome this
limitation, in [28] it is proposed the combination of LASS@AVAR frameworks, which is further explored in this paper
for very short-term forecasting of wind power.
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2.1. Formulation of the Forecasting Problem

The VAR model allows us to model the joint dynamic behavioraotollection of WPPs by capturing the linear
interdependencies between its time series. In this multitea (or spatio-temporal) framework, the future trajegtof
output from each WPP in the model is based on its own pastvélagged values) and the past values of the other WPPs
included in the model.

Supposey;,; is the time series containing the average power measuredP® Mand time intervalt. Using an
autoregressive (AR) process of orgefARp]) it is possible to describe a future trajectory based onatg pbservations
as

P
Yit = b+ Zﬂl “Yii—1 + €, (1)
=1
wheregs, ..., 5, are the model coefficients,is a constant (or intercept) termjs the order of the AR model, and is a
contemporaneous white noise (or residuals) with zero medranstant variance?.

Let{Y:} = {(y1,+, 92,4, ---,yx) }, denote &-dimensional vector time series. Modeling it as a vectoorgressive
process of ordep (VAR [p]), we obtain an expression relating the future observa@esch of théd: WPPs to the past
observations of all WPPs in the model, given by

p
Yzzn-ﬁ-sz'Ytdﬁ-Ut, (2)

Jj=1

in which 7 is a vector of constant terms, eabh € RFXxk represents a coefficient matrix ang ~ (0, X,,) denotes a white
noise disturbance terms.

In order to get a compact matrix notation, I8t = (Y1,Y>,...,Yr) define thek x T response matrix,B =
(B1, B2, ..., Bp) the k x kp matrix of coefficients,Z = (Z1, Z»,...,Zr) the kp x T matrix of explanatory (or
predictors) variables, in whictt; = (Y/_1,Y/ 5,..., Y/ ,), andU = (u1,u2,...,ur) the k x T error matrix. To

simplify the notation, considen = kp. Then it is possible to express (2) as
Y =nl"+BZ+U, 3)

with 1 denoting al" x 1 vector of ones.

The matrix of unknown coefficients needs to be correctlynesstied to obtain the model that “best” characterizes the data
Commonly, this is achieved using the least squares statistiethodology by choosing the coefficients that minimiee t
sum of squared errors. The predictor that will be deduceesgifor a given sample, the in-sample forecasts of the variab
of interest.

Usually this methodology is applied with centered variabtestead of the original ones. This allows simplificatioms i
the calculation, including the model handling without ne&pt term. The intercept can be easily estimated after tiaein
has been fitted. As a result, and assuming centered varigldes Z, n will no longer appear in the least squares objective
function.

The multi-period forecasts can be generated with two atér@ strategies, iterative or direct approach [29]. Irs thi
paper, a direct approach, in which a specific model is crefatedach lead-time, is adopted to generate six hours ahead
wind power forecasts.

2.2. Sparse Structures with LASSO

This section presents a set of different sparse structarethé LASSO-VAR model, inspired by [30], to capture the
dynamics of the underlying system.

The LASSO framework is powerful and convenient to use whemtdliag high-dimensional data. The loss function is
a regularized version of least squares that introduces,; grenalty on the coefficients. The penalty function shrink som
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of the coefficients to zero, performing variable selectind producing a sparse solution. Instead of assuming thtell
predictors are contributing to the model, this frameworkants the most important predictors, i.e. those with thengfest
contribution to the prediction of the the target variable.

The standard LASSO-VAR (sLV) loss function is expressed3a$ [

1
§||Y—BZH?+/\||B||17 (4)

where|| X|, = (327, |z:[)*/* is the L, norm, || X |12 = 3o, >ie1 |:;]? is the squared Frobenius norm akd> 0
is a scalar regularization (or penalty) parameter comtiglihe amount of shrinkage.

The L, penalty works as a sparsity-inducing term over the indialdentries of the coefficient matri®, zeroing some
them in a element-wise manner.

Since the same predictors are available for each targethlarfeach WPP), the VAR coefficients can be estimated with
ordinary least squares applied independently for the ssge of each individual target variable [31]. The problarthien
re-formulated for each row of the matrix, with a different penalization parameter for each, resglth a separable loss
function for each variable.

The main advantage of this approach, here called Row LASBRYLV), is the possibility of distributed computing,
since each equation can be solved in parallel. Its lossifumcan be expressed as

1 , 2 )
- HY - BZZH £ HBZ
2 2

. (5)
whereY® andB*,i = 1,..., k, correspond to thé" rows of theY” and Z matrices, respectively.

An alternative to deal with model’s coefficients individiyalvhich results in an unstructured sparsity pattern, iméike
some simple modifications to the standard LASSO-VAR penaltyrder to capture different sparsity patterns accorging|
to the inherent structure of the VAR [30]. These modificagipnoduce more interpretable models that offer great flityibi
in the detection of the true underlying dynamics of the syst&hich is especially fruitful in the high-dimensional ¢ext.

To take into account characteristics such as lag seleatithin-group sparsity, delineation between a component’s
own lags and those of another component and evaluate whiicbles add forecast improvement, the following LASSO-
VAR sparse structures are explored: Lag-Group LASSO-VAR)(Lag-Sparse-Group LASSO-VAR (IsLV), Own/Other-
Group LASSO-VAR (ooLV) and Causality-Group LASSO-VAR (c)\hese LASSO schemes look through the sparsity
in distinct group structures trying to find the ideal sparpiattern.

The Lag-Group LASSO-VAR model considers the coefficientaiged by their time lags and looks for time lags that
add forecast improvement. Its objective function is

1 P
§HY—BZ||?+/\ZHBZ||F7 (6)

=1

where eaclB; is a sub-matrix containing the ldgoefficients.

This structure can be relevant if the interest is to perfamdelection. However, although it is advantageous when all
time series tend to exhibit similar dynamics, it might be testrictive for certain applications since all the coeéfits of
some lags are not considered in the prediction, and sometima#icient by including the entire lag if only few coeffioits
are significant.

In an attempt to overcome some of these limitations, the $parse-Group LASSO-VAR model adds within-group (or
lag) sparsity to the Lag-Group LASSO-VAR through the losction

P
Y = BZ|[5 + (1= )XY |Billp + X |[Bl; . (@)
1=l

e
2k
where0 < « < 1is a parameter regulating the trade-off between the grodmatiin-group importance.
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As can be easily seen, the Lag-Group LASSO-VAR and the stdridaSSO-VAR are obtained considering= 0
anda = 1, respectively. Here, as proposed in [30], the wihin-groparsity is estimated based on the number of time
series/variables, and setas= 1/(k + 1). In this sense, as the number of variables increases, thtegtbe group-wise
sparsity and smaller the sparsity within-group. This vatrelows to explore the significance of each lag and, at theesa
time, access the importance of each coefficient within eagh |

The Own/Other-Group LASSO-VAR model concerns with the oty that, in many settings, the prediction of a
variable is more influenced by their own past observatioas thy past observations of other variables. To address this
question in a lag context, the coefficients of edhare grouped by the diagonal entries representing vargblen lags,
and by off-diagonal entries representing cross depenégngih other variables, using the loss function

% IY = BZ|2 + VEX S [[diag(By)ll, + Rk — DA S |1B7 |, ®)
=1 1=l

whereB,” = {[Bi]i; : i # j}. Since the groups differ in cardinality, it is necessary &ight the penalty accordingly to
avoid favoring the larger groups of off-diagonal entries.

If all time series do not share the same dynamics, one mayteeegted in finding which of them do. Recent studies
have been addressing these question considering causaUsss in multivariate series, also called Granger céysahe
idea is that a time serigs is Granger-caused by other time serjgsf knowing the past values af; helps to improve the
prediction ofy; [32].

With the intention of learn a causal inference from the déua Causality-Group LASSO-VAR model (see [33]) groups
the coefficients by the corresponding variables (that tifileg8. Its loss function is

1
S I = BZ|54+ XD [1(B1)is(Ba)is - - (Bp)isl, - 9)
i#j
The L, norm of p—tuple of (By,);; is a composite penalty that will force allmatricesBy’s to share the same sparsity
pattern, as can be observed in Figure 2. This structure casdfal to detect which locations can promote the forecdsts a
some location.
For a better understanding of the presented LASSO-VAR ntwjdhe Figure 2 illustrates an example of corresponding

generated sparsity patterns.

3. VAR MODEL FITTING

The LASSO structures described in the previous section aredifferentiable objective functions, which makes it
challenging to solve since it is not possible to obtain aediderm solution. The ADMM is a recent powerful algorithmtha
circumvent this situation and has been successfully showa efficient and well suited to distributed convex optirtizza,

in particular for solving many large-scale statisticallgems [27]. The method also offers a high convergence pedoce
that, for some problems, is comparable to recent competiigorithms.

3.1. ADMM Framework

The ADMM framework combines the decomposability offeredthy dual ascent method with the superior convergence
properties of the method of multipliers, which means thabpgms with non-differenciable objective functions can be
easily addressed and it is possible to perform a parall@higtion (topic covered in section 3.2).
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LASSO-VAR
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rLV
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cLV

Figure 2. Example of Sparsity Patterns produced by LASSO-VAR Structures.

To give an overview of the key elements of ADMM, first recak thASSO-VAR objective function in (4) and rewrite it
in ADMM form as
minimize % IY — BZ|% + A||H],
(10)
subjectto B — H =0.

Essentially, the ADMM form is obtained replicating tievariable in theH variable and adding an equality constraint
imposing that this two variables are equal. This can be weag a splitting of the objective function in two distinct
objective functionsf(B) = % |Y — BZ||3, andg(H) = X || H||,.

The augmented Lagrangian of this problem is

1
Ly(B,HW) = g ||[V = BZ|5 + M| H|, + W' (B~ H)+ £||B— H], (11)

whereW is the dual variable (or Lagrange multiplier) and> 0 is called the penalty parameter (or augmented Lagrange
multiplier).
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It is common to rewrite this Lagrangian in a scaled form by borimg its linear and quadratic terms
1 P P
Ly(B,H,U) = 5|l = BZ|3 + AllH|l, + § 1B - H + UII3. - Z1IUII%, (12)

whereU = (1/p)W is the scaled dual variable associated with the constiat H. The last term will be ignored in the
sequel since it is a constant and does not matter when desilingninimizations.
The method of multipliers for this problem is

(B H*) = argmin L, (B, H,U") (13)
Uk+1 = Wk +Bk+1 o Hk+1.

The method of multipliers greatly improves the convergepiperties over dual ascent, converging under far more
general conditions. However, it is unable to address deositipn. The ADMM goes beyond decomposition issue by
performing alternating minimization of the augmented laagjian overB and H instead of the usual joint minimization.
The ADMM algorithm for (10) consists of the following iterahs

2
B .= argml;n (% HYfBZ||§+gHBfHk+UkH2) (14)

2
H* = argmin (/\ \#l, + 4 HB’““ —H+U ) (15)

2

Uttt .= u* 4+ Bt — gt (16)

The ADMM performs minimization with respect t8 (with H andU fixed), in (14), followed by minimization with
respect tai (with B andU fixed), in (15), and finally it updates the scaled dual vagdh] in (16).

Unlike the method of multipliers, the ADMM essentially degtes the functiong andg, which makes it possible to
exploit the individual structure of theandg so thatB-minimization andH -minimization may be computed in an efficient
and parallel manner.

The ADMM formulation for the other LASSO-VAR structures pemted in Section 2.2 can be obtained by replacing the
regularization termg(H) = A ||H||,, in (10) and subsequent expressions by the correspondi@siOApenalty function.
Nevertheless, this change is not trivial and several detdibuld be taken into account for a practical implemematio
which will be described in Section 3.3.

3.2. Distributed Fitting of the LASSO Structures

This section presents distributed ADMM based methods egpby examples or by predictors, to the different LASSO-
VAR structures. The main goal is to divide the initial prablénto small local sub-problems and thus improve the
computational performance by solving the problems in aribisted way, with each processor (or computer) handling
a sub-problem.

Finding a solution to the problem of minimize the LASSO-VAG®$ function, (4), involves computingZ andY Z’ in
a distributed manner. In this context, there are two mainasdes (see Figures 3 and 4): row block distribution androolu
block distribution, in whichZ is partitioned intoN row-blocks (splitting across predictors) or column blo¢gglitting
across examples), correspondingly.

One must choose the adequate scenario according t6-thatrix dimension, i.e., choosing a row block distributibn
it has a large number of rows and a modest number of columrdsa anlumn block distribution otherwise. To cope with
these settings, the same approach used for the sharing@prdiol case of row-block distribution) and for global corsen
problem (in case of column-block distribution) will be folved [27]. These scenarios are described, using the sthndar
LASSO-VAR, in the remainder of this section. The same pracedan be followed for the other LASSO-VAR structures.
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.
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Figure 3. Row block distribution. Figure 4. Column block distribution.
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Figure 5. Sub-block partitions.

3.2.1. Row block distribution

The matrix B is partitioned inN column-blocks asB = (B; ... By) with B; € R**Ti and the data matriZ is
partitioned inN row-blocks asZ = (Z1, ..., Zn) with Z; € R™*" where>_~ | m; = m. (ThusBZ = 3"~ | B; Z;,
i.e.,B; Z; can be thought of as a “partial” predictionf) However, the blocks have to be carefully constructed wisémg
an autoregressive model. One has to be sure that all therdadmemg considered in each block division/sub-problem. In
this case, this is ensured patrtitioning first e@handZ lag in N column and row sub-blocks, respectively, and stacking the
formed sub-blocks in each lag corresponding to the same pedttion, in order to obtain blocks containing infornaati
of all the lags considered in the model.

This kind of procedure is especially important for the stues in which the penalty considers the division by lags,
such as the Lag-Group and the Lag-Sparse-Group LASSO-VARtates. For a 2-lag model it corresponds to gathering
B with B andz™" with Z*, to obtain each block; andZ; fori = 1,... N (see Figure 5). For simplification, the
notationBZ" " is used to expresBF1Z.

Then, for standard LASSO-VAR, the model fitting problem (éfbmes

N 2 N
1
minimize HY—ZBiZi -I-)\ZlHBz’Hl: (17)
F i=

=1
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and can be expressed in the sharing problem form as

N

YfZHi

i=1

2 N
+A Bl
F =1

subjectto B;Z;, — H;=0,i=1,...,N,

R 1
minimize -
2

(18)

with new variables; € R**”. Thus, the scaled form of ADMM is

2
BFf' .= argmin ()\ |Bill, + L HB;’Z;’ —Hf +Uf )
B; 2 F
2

a1 (1 al R k k|2 (19)

H ::argn}}n 5 YfZHi JrEZHBZ Zi; — H; +U;
=1 F =1 F

Uttt =04+ Bz, — HIL

Carrying out theH/ -update and using a single dual variable, the resulting ADMybrithm is

— PR 2
B = argmin (2 ||BFz, + B —BZ" —U* — BiZ|| + | B
B; 2 F 1
_ 1 _
" = N (Y —pBZ" ¢ pUk) (20)
Uttt =Ur 4+ BZT -ET

EachB;-update is a LASSO problem that can be solved using ADMM by#tdg (10) as

N 2
Y; — BiZ; - + XN ||Hill,

L 1
minimize -
5|

(21)
subjectto B; — H; =0,

whereY; = B¥Z, + H* — BZ" — U* andX = \/p.

3.2.2. Column block distribution

The matrice§” andZ are partitioned iV column-blocks a&” = (Y1 ...Yy)andZ = (Zi ... Zy), withY; € R**7Ts
andZ; € R™*":, where>"" | T; = T. (ThusY; and Z; represent theé'" block of data and will be handled by thg'
processor.) In this case, there is no need to perform a ‘@pecnstruction of the blocks (partitioning the lags intds
blocks) since all the lags are being considered in each li&ion/sub-problem.

Then, for standard LASSO-VAR, the model fitting problem (égbmes

N
L1 2
minimize E IYi = BiZi||p + M| Bill, (22)

i=1
and can be expressed in the consensus problem form as
1 N
minimize = ||Y; — BiZi|% + M| H],
24
i=1 (23)
subjectto B, — H=0,i=1,...,N,
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with variablesB; € R**™ and H € R¥*™, Thus, the resulting ADMM algorithm for consensus is

N
k 1 P k k|2
pE+1 ::argr%lin(iz;|\E—BiZi|\;+5HBZ-—H + U F)

p

N _ 2 24
HF ::argmin(/\HHHlJr—pHHkaHkaH ) (@)
H 2 F

Uttt =Uf + BT - BT

3.3. Practical Implementation

For a practical implementation, some aspects of the ADMMidtlgm should be further discussed. Firstly, the efficient
computation of B-update andH -update must be exploited. In addition, there are two pararmehat need to be set:
the LASSO regularization parametey, and the ADMM penalty parametes, For all LASSO variants, all the primal
variables are initialized to zero and the overall stoppirigexon (that tests if the sequend®B™™*},—o1 2. stabilizes
itself sufficiently to stop the algorithm) is set id3" ™" — B*|| / max (1, min(| B**"|,|B"|)) < ¢, wheree is the relative
tolerance parameter. The only exception is the rLV stractwhich is implemented based on the code suggested in Boyd

[27] and considers a relative tolerance parameteand an absolute tolerance parameter,

3.3.1. B Update Step
The B-update, i.e, the step (14), takes the form of a ridge regmeqse., quadratically regularized least squares)
problem, with analytical solution

1

B = (YZ' + p(H" —U")) (22" + pI) . (25)
This solution is shared by all the LASSO-VAR structures preeed in Section 2.2.

The B-minimization step of the ADMM (14) reduces to solving a gystof linear equations involving the matrix
Z7Z' + pl. As long as the parametgrremains constant throughout the algorithm, the factddmaif the matrixZ Z’ + pI
can be cached once at the outset, and subsequent iteragiorize darried out cheaply only involving back-solving the
system using this factorization. Furthermore, for “skiht® matrices (i.e.m > n), one may apply the matrix inversion
lemmato(ZZ' + pI)” " and instead compute the factorization of the smaller méfrix (1/p)2'Z)"".

In a column block distribution framework, the same techaigeed for (14) applies faB;-update in (24) , resulting in
the analytical solution

BE = (YaZl + p(H* — UF)) (22} + pI) " (26)

The same techniques as above, i.e. the factorization of henthatrix inversion lemma, can also be applied to obtain an
efficient method for computing multiple updates.

3.3.2. H Update Step
The H-update will result inL.1 — L2 minimization problems that can be solved by meansioinkages. For the
standard Lasso-VAR, the solution to step (15) is given eferése by

H* = 5 (BM 4+ U*, \/p), 7)
whereS; is the scalasoft thresholding operator, defined as

Si(z,a) = % max {0, |z] — a}. (28)
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The shrinkage (28) is the proximity operator of the norm
. 1 2
Si(,a) = argmina |w|, + 3 [l — |3 (29)
Following the same procedure used for standard LASSO-VARH-update for Row LASSO-VAR is given by

H' = 5, (B*™ + U™ \/p). (30)
For Lag-Group LASSO-VAR instead of doing scalar soft thaddimg, a matrix soft thresholding is performed, i.e.,
HkJrl _ SF(BZIC+1 +Ulk7>\/p)7 (31)

whereS is the matrixsoft thresholding operator, defined as

Sp(X,a) = ——max {0, || X|, —a}. (32)

X
X1

Similarly to the approach used in [34], thé-update solution for Lag-Sparse-Group LASSO-VAR, can beiokd
combining scalar and matrix soft thresholding and is givieckwise by

H*' = Sp(S1(Bf T + UF, (1= @)\ /p), e\ /p). (33)

For Other/Own LASSO-VAR, two vector soft thresholding asgfprmed, one for diagonal entries and other for off-
diagonal entries, in the following way

H* = Sy (diag(BI ' + UF), VEN p)T + S2 (Bf Y + UF) ™, VE(k — DM /p) (1 - 1), (34)

wherel denotes & x k matrix of ones/ denotes thé x k identity matrix, andS; is the vectosoft thresholding operator,
defined as
X
SQ(X, a) = Wmax{o, HXH2 —a}. (35)
2

Finally, the H-update solution can be obtained performing a vector soéstiolding and is given row-wise by
HY = Sy ((By ™+ UD)(Be ™ + Uiy (B 4 Up)is M p).- (36)

In the column block distribution framework, the procedwsdhe same but adjusting the soft thresolding operator to
each LASSO-VAR structure. For instance, for the standar&8®-VAR, the solution td7-update in (24) is given by

H' =5, (E’““ +T", /\/(Np)). 37)

Further details abousbft thresholding operator can be found in [27].

3.3.3. Parameters Estimation

The optimal parameter values for each LASSO-VAR structueeeatimated through-fold cross validation, where the
pair (X, p) that gives rise to the lowest square error is selected fdr kesad-time.

To perform cross validation, a grid of and p values are considered. Far a decreasing sequence of values are
computed, spaced logarithmically from the vallig. yielding to the sparsest solution (diagonal coefficientrioes).
The Anax is calculated following the rule described in [33].
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Figure 6. Cross-autocorrelation plot between two wind power plants.

Selectingp as a function of\ gives a desirable performance and the computational effgréars to be smaller. Hence,
p = p*Xis assumed, with* being an auxiliary constant, and a range of constant valligsconsidered to perform cross
validation.

4. APPLICATION AND CASE STUDY

4.1. Experimental Setup

4.1.1. Dataset Description

The proposed VAR-LASSO frameworks are tested on hourly me@ud power data that comprises one year of
observations from 66 WPPs located in the same control afea.ifdividual rated power ranges between 2 MW and
220 MW. All data have been normalized by the nominal powehabits values are between 0 and 1. The time series data,
as depicted in Figure 6 for two WPPs, exhibits a high croseeaurelation in lags different from zero and one.

The first nine months of the year (January-September) a as@ training set on which the implementation of the
fitting procedure is optimized by cross-validation. The agmng three months (October-December) are then used to
evaluate the performance of the models, which results @septed in Section 4.2.

In all models, two lags are used and forecasts fromh, h =1,...,6, i.e., six steps ahead, are considered. The
ADMM tolerances are presented in Table I. For the distridlt&SSO-VAR algorithms, the problem is splitted into 8
subproblems. The calculations are performed on a HP withe8 Gore i7-2600 CPU @ 3.40 GHz processor and 8 GB of
RAM and the algorithm is programmed in MATLAB R2012a.

Table I. Tolerance parameters used for all the ADMM-based LASSO-VAR algorithms (distributed and non-distributed)

rLv sLvV LV cLV  IsLV  ooLV VAR

Non-Distributed e, =le-4je,, =1e-2 1e-5 1le-4 1le-5 3e-6 le-4 le-5
Distributed €, =le-4;e, =5e-2 2e-3

4.1.2. State of the Art Benchmark Model

An alternative method for estimating a sparse VAR model legntproposed in [25] and is applied to very-short-term
wind power forecasting in [23]. This approach, hencefoeflerred to as sVAR, is based on a parameter-ranking proeedur
to determine the sparse structure for the VAR model and maxifikelihood estimation (MLE) to estimate the parameter
values. Fitting the sVAR model is a two-stage procedure. filsestage determines the temporal orgerof the sVAR
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model and makes a first estimation of the sparsity strucfiire.second stage refines the selection of parameters made in
stage one.

The sVAR is implemented here as part of our case study sashaiformance may be compared to that of the proposed
VAR-LASSO method.

4.2. Results and Discussion
In this section, several results obtained from the expeartrdescribed in Section 4.1 are provided and discussed.
4.2.1. Forecast Accuracy

The forecasting skill of the LASSO-VAR structures is evafehwith the root-mean squared error (RMSE) and mean
absolute error (MAE) calculated for titeth lead-time with the following expressions:

k
1 ~ 2
RMSE, = E; (Fonie = Yern)
. (38)
1o
MAE, = E; Titnte = Yien|

with the forecastXAth‘t) made at time instaritand observedy( ;) value normalized by the WPP rated power.
These skill scores were calculated separately for each Imedwy the full dataset of errors. For lead-time 1, Table
Il shows the global RMSE and MAE scores for the six LASSO-VARIctures and also for the VAR model.

Table Il. Average RMSE and MAE across all sites for lead-time ¢ + 1 (values normalized by rated power)

rLv sLv LV cLv IsLV ooLV VAR

RMSE  11.1406  11.1387 11.1979 11.1310 11.1691 11.1300 11.2281
MAE 7.5650 7.5636 7.6431 7.5538 7.6258 7.5368 7.6563

The forecast error metrics show that all the LASSO-VAR dtrtess outperform the VAR model in terms of RMSE and
MAE. As expected, the sLV and rLV exhibit very similar scoeesl the structure with the worst performance is the ILV.
The two best scores, highlighted in bold, are achieved byahd ooLV structures.

The improvement of the VAR and LASSO-VAR structures overAliemodel and persistence (definedgs, . = :),
in terms of RMSE, for each lead-time is plotted in Figures d &respectively. These plots clearly show that the cLV and
oolLV structures achieve the highest improvements for alii{émes except for lead-time+ 5 whose top is led by ooLV
and IsLV. Also, all the LASSO-VAR structures show better noy@ment than the VAR model, more pronounced after the
second lead-time.

In general, the improvement over AR is higher for the firseéhtead-times ranging betweént8% and6.91% on
average for the structures with the best performance (cld/cahV).

It is noteworthy that the rLV and sLV also have a very pleagderheanor for all lead-times, with an improvement
deviation from the best model, betwe@rd7% (for the first lead-time) and.5% (for the fifth lead-time). Another
interesting conclusion is that the improvement decays thigHead-time, meaning that the spatial-temporal inforomas
more relevant for the first three lead-times and with a pedéeaat-time two that corroborates the information depicted b
the cross-correlation plot (Figure 6).

The improvement over persistence increases with the timedmotill lead-timet + 4, which is the maximum value,
decreasing very slightly in the remaining lead-times. Ageted, the improvement over persistence is higher cordpare
to the improvement over the AR model.

The results concerning the forecasting performance of eid/@LV structures against sVAR (benchmark model from
the state of the art) are presented next.

14 Wind Energ. 0000; 00:1-21 © 0000 John Wiley & Sons, Ltd.
DOI: 10.1002/we
Prepared using weauth.cls



L. Cavalcante et al. Sparse Structures for Very Short-term Wind Power Forecasting

—e—rLV
7r P —*—sLV
_ = —&—|LV
cLV
g6 - —+—IsLV [
= '~ —%- ooLV
E(: . -0 -VAR
o 5f .
>
(@)
T
()
£ 4t 1
(5]
>
o
3
= 3r N b
~
~
~
~
~
2 15 i
| | | | | |
1 2 3 4 5 6
Time Horizon (h)
Figure 7. Improvement of the LASSO-VAR structures over AR model.
111 /./’*‘"‘——_._‘*‘_ h
—~ T T T = - =%
S
3]
g
9 107 ]
7] --=O~
2 -0 TTe--e.
s TTT-e
o 9 i
>
o
<
g —o—rLV
o 8 —*—sLV H
<) —&— LV
g cLv
= —+—IsLV
7k o, ~—*— ooLV
(] -0 -VAR
| | | | | T

1 2 3 4 5 6
Time Horizon (h)

Figure 8. Improvement of the LASSO-VAR structures over persistence.

The Figure 9 compares the cLV and ooLV with the sVAR modelespnting, for the first lead-time, the improvement
over the sVAR model for each WPP. The results show that, ffitht lead-time, the sVAR only has a better performance
than cLV and ooLV at one WPP. Apart from that WPP, the improzetover sVAR ranges betwe®m8% and9.48%
for cLV and betweed).17% and9.85% for ooLV. More specifically95% of the WPP show an improvement o\ and
55% of them achieved an improvement ovgk.
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Figure 9. Improvement of cLV (left) and ooLV (right) over the sVAR model at each WPP for lead-time ¢ + 1.
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Figure 10. Representation of DM test p-values for forecast accuracy performance at each WPP. The dashed line represents the
significance level 0.05.

The Diebold-Mariano (DM) test [35] is applied to assess thtstical significance of the forecast error improvement i
each WPP. The null hypothesis is “no difference in the aayuodtwo competing forecasts”, and if thpevalue is less than
a significance level (i.e(.05 in this paper), then the observed result would be highlykehfi under the null hypothesis.
Figure 10 depicts thg-values obtained for the first lead-time, which shgwgalues under the significance level for the
vast majority of WPP, stressing that the difference in aacybetween the competing forecasts is significant.

4.2.2. Analysis of the Sparsity Patterns

In order to understand the joint dynamic behavior of thisugrof WPP, the sparsity patterns (i.e., coefficients’ matrix
obtained by the LASSO-VAR structures for the first lead-tiame depicted in Figure 11. The darker shade represents
coefficients that are larger in magnitude.

The figures show that the models that result in an unstrugttsparsity pattern (rLV and sLV) give rise to the most
sparse matrices, with abow®% of null values. Immediately afterwards, wi#s% of sparsity, is the IsLV which has a
structured blockwise sparsity, but with unstructured sipawithin each block. The structured cLV gives rise to mgar
16% of sparsity, revealing that, in average, about 11 sites weteonsidered to the forecast of each WPP.

Both ILV and ooLV structures present non-sparse coefficigatrices. This means that both lags (in ILV) and both
diagonal and non-diagonal entries (in ooLV) were consideetevant in the model. However, while the ILV accounts for
the same penalty for each lag, the ooLV assign differentlfieaao the diagonal and non-diagonal entries. This might
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Figure 11. Coefficients matrix (sparsity structure) of the different LASSO-VAR structures for first lead-time (nz = % of non-zero
entries).

justify the good performance of the ooLV, that, in generabduces non-diagonal coefficients of smaller magnitude tha
the ones produced by ILV. As expected, it can be observedathfigjures agree that the diagonal coefficients of the the
first lag should have a higher magnitude, revealing that mebkr’'s own first lag are more likely to improve the forecast
than the other entries.

The top performance of ooLV highlights the great importantéhe predictors corresponding to the first lag in the
prediction, relatively to the remaining coefficients, tehbuld also be taken into account but with a smaller cortichu
Also, the good results obtained by cLV demonstrates the itapoe of learning the causal inference from the data inrorde
to find out which are the locations that add improvement tqtiegliction.

The sparsity obtained by sVAR (arou88%) is much higher than the ones exhibited by any of the LASSGRVA
structures. However, a higher sparsity does not alwaysatelia better performance and other aspects, such as forecas
improvement and computational time, should be considefezhvwehoosing the most appropriate model for each case.

Wind Energ. 0000; 00:1-21 © 0000 John Wiley & Sons, Ltd. 17
DOI: 10.1002/we
Prepared using weauth.cls



Sparse Structures for Very Short-term Wind Power Forecasting L. Cavalcante et al.

©
S}
1

0.016¢

— [ Non-Distributed|
0.014F [ Distributed 3k
_0012- @5t
z o
c =]
§ 0.01+ g ol
£ 0.008" 2
3 £ 155
@ 0.006 S
£ gl
0.004F =
0.002- I I 051
o I J 000 0 . me me my . BN
rLv sLV ILV cLV IsLV ooLV rLv sLV ILV cLv IsLV oolLV

LASSO-VAR structures LASSO-VAR structures
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ADMM.

4.2.3. Computational Performance

In this subsection the computational performance of th&idiged ADMM algorithm is assessed. Since the input
matrix has a modest number of rows and a large number of calimre R132%6549 for first lead-time), a column block
distribution scenario is followed. In the implementatiohtbe distributed algorithm, thé3-update and/-update are
performed in parallel.

The skill scores obtained for each for each ADMM-based ithisted LASSO-VAR algorithm are very similar to the
corresponding non-distributed version. Consequentéyrtimning times and number of iterations of both distribuged
non-distributed versions are evaluated and compared ®siigate which advantages one may enjoy when a parallel
computation is performed.

The results are depicted in Table 11l that shows that the fiskstributed ADMM results in a decrease of the running
time for all structures except for the rLV and ooL, and in ardase of the iteration number for all structures except sLV
and ooLV.

Table Ill. Total running times (in seconds) and number of iterations (between parenthesis) for 6 lead-times of the LASSO-VAR
structures using distributed and non-distributed ADMM

LASSO-VAR structures  Standard ADMM  Distributed ADMM

L 3.02 (4162) 5.29 (3610)
sLV 1.37 (84) 0.54 (163)
ILv 0.86 (397) 0.46 (128)
cLv 6.92 (472) 2.70 (164)
IsLV 0.80 (323) 0.37 (120)

ooLV 0.51 (109) 0.57 (142)

To properly analyze these results, the computational tianesseparated to distinguish the time elapsed in the cycle
where the iterations are made and the time elapsed out ofyhie where auxiliary calculations, such as the Cholesky
factorization, are performed. As one knows, the runningtoheach cycle depends on the number of iterations takem, the
itis more appropriate to display the time that each strectakes to perform one iteration, i.e., a per iteration éosirder
to make the algorithms comparable. The running times fohn s&icture, using both versions of the ADMM (distributed
and non-distributed), by iteration and for auxiliary cations, are represented in Figure 12.

Concerning the time by iteration, it is possible to note gikdtructures show very similar results in both versionsept
the sLV in which the running time is greatly reduced when &ritlisted version is used. As a result, the decreasing of the
total running time for all structures, except for sLV, is yeensitive to the number of iterations taken in the distadu
version. This seems to justify the results in Table IlI rielgtto the structures sLV, ILV, cLV, IsLV and oolLV, taking mt
account that the time spent out of the cycle is similar in hattsions. Also, it can be observed that the time spent by rLV
out of the cycle greatly increases in the distributed versighlighting the impact of the increasing number of catioins
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(proportional to the number of WPPs) in this structure sibceapplied to predict each location separately. This axyl
that, although the number of iterations is slightly deceeas this structure, the total elapsed time has increased.

Taking a deeper look over the fitting times of the non-disiiglol versions of the structures with better performances, w
observe that the cLV is quite slow, possibly due to the comufdm of a high number of iterations with a high per iteration
time, while ooLV stands out as the fastest. Although notatdp performances and of being the most time-consuming by
iteration, the sLV also offers good results and its fast eogence results in a relatively low fitting time. Thereafiethe
objective is to find a model with a good performance and a laming time, the best choice should lie with the ooLV.

Regarding now the distributed versions, the rLV should motdnsidered since there is no advantage in its application.
It is important to point out that, except the sLV, all the ats&ructures have similar per iteration times in both versio
indicating that the implementation of its distributed vensonly brings advantage if the number of iterations in thigsion
is less than the one achieved in the non-distributed ver$mdeal with this, the tolerance of the termination cridarmust
be chosen with some caution. The sLV structure is the onlytleaeshows a significant decrease in the time per iteration,
getting a competitive total running time despite the nundféterations be higher. Accordingly, if one looks for a bata
between the performance, the running time and the scdialtiie sLV is probably the more adequate choice.

Finally, it is important to emphasize that the proposed weadtogy provides higher computational performance
compared to competitive models (such as the sVAR, with aingntime of about 39 hours), which is a key requirement
for the large-scale application of the method.

5. CONCLUSIONS

This paper describes a forecasting technique that comMfBsand several variants of the LASSO framework to fully
explore information from wind power time series distrilii@ space. The proposed methodology explores competing
sparse structures for the VAR coefficients matrix and uses ADMM optimization framework to guarantee fast
convergence and parallel computation.

For a real case study with 66 wind power plants, all the diffieisparse structures of the LASSO-VAR model shows
a better performance than the Persistence, AR and VAR maataiisa sparse-VAR method from the state of the art. The
Own/Other-Group LASSO-VAR (ooLV) and standard LASSO-VASRY) structures turn out to be the best choices for,
respectively, non-distributed and distributed impleraénts.

It is important to stress that one of the goals is to estimapasise matrix in which only the relevant predictors are
selected to contribute for the forecasts with a small coatpartal effort. However, the sparsity of the matrix depeads
the number of relevant variables under the dynamic behaansidered by the structure and that a more sparse matrix
does not always mean better performance. For instanceiniteisesting to note that the ooLV does not produce a sparse
matrix of coefficients, but its results stand out in termsathtforecasting skill and computational time.

As we have shown, the skill of the LASSO-VAR structures deiseon the dynamic behavior of the data and there is
not a uniformly best structure. Therefore, each case musalefully explored and sometimes a trade-off between the
computational expense and predictive performance musidoie in order to choose the LASSO-VAR structure that meets
our objectives.

This work was motivated by the desire to explore differerirsp structures and propose a forecasting solution with hig
scalability. Despite the focus in point forecast, this noelihlogy can be directly applied to forecast the mean andnee
of a logit-normal distribution and generate probabiliticecasts. Future work should explore alternatives to tB&/IM
algorithm (e.g., coordinate descent algorithm), includegenous variables in the VAR and consider the possibifits o
dynamic sparse structure.

Wind Energ. 0000; 00:1-21 © 0000 John Wiley & Sons, Ltd. 19
DOI: 10.1002/we
Prepared using weauth.cls



Sparse Structures for Very Short-term Wind Power Forecasting L. Cavalcante et al.

ACKNOWLEDGEMENTS

This work was made in the framework of the SusCity projech{@ct no. “MITP-TB/CS/0026/2013") financed by national
funds through Fundacao para a Ciéncia e a Tecnologia F@&¥Ftugal. Jethro Dowell is supported by the University of
Strathclyde’s EPSRC Doctoral Prize, grant number EP/M508IL

REFERENCES

1.

10.

11.

12.

13.

14.

15.

16.

17.

20

Wang J, Botterud A, Bessa R, Keko H, Miranda V, AkilimaliCarvalho L, Issicaba D. Wind power forecasting
uncertainty and unit commitmerApplied Energy November 201188(11):4014-4023.

. Bessa R, Moreira C, Silva B, Matos M. Handling renewablergy variability and uncertainty in power systems

operationWley Interdisciplinary Reviews: Energy and Environment March/April 2014;3(2):156-178.

. Botterud A, Wang J, Zhou Z, Bessa R, Keko H, Akilimali J, &ida V. Wind power trading under uncertainty in

LMP markets|EEE Transactions on Power Systems May 2012;27(2):894—903.

. Gonzalez-Aparicio |, Zucker A. Impact of wind power urteinty forecasting on the market integration of wind

energy in spainApplied Energy December 2015}159:334—-349.

. Colak I, Fulli G, Sagiroglu S, Yesilbudak M, Covrig CF. Sitingrid projects in Europe: Current status, maturity and

future scenariosipplied Energy August 2015152:58-70.

. Estanqueiro A, Castro R, Flores P, Ricardo J, Pinto M, Rads R, Lopes JP. How to prepare a power system for

15% wind energy penetration: the Portuguese case stddgl. Energy February 200811(1):75-84.

. Monteiro C, Bessa R, Miranda V, Botterud A, Wang J, ConzelmG. Wind power forecasting: state-of-the-art 2009.

Technical Report ANL/DIS-10-1, Argonne National Laboratory November 2009.

. Silva C, Bessa R, Pequeno E, Sumaili J, Miranda V, Zhou ZieBad A. Dynamic factor graphs - a new wind power

forecasting approacHechnical Report ANL/ESD-14-9, Argonne National Laboratory September 2014.

. Gallego C, Pinson P, Madsen H, Costa A, Cuerva A. Influerfidecal wind speed and direction on wind power

dynamics - application to offshore very short-term foréicas Applied Energy 2011;88:4087—-4096.

Poncela M, Poncela P, Peran JR. Automatic tuning of &alfitters by maximum likelihood methods for wind energy
forecastingApplied Energy 2013;108:349-362.

Gneiting T, Larson K, Westrick K, Aldrich MGE. Calibrat@robabilistic forecasting at the Stateline Wind Energy
Center: The regime-switching space-time methimdirnal of the American Satistical Association 2006;101:968—
979.

Hering AS, Genton MG. Powering up with space-time windeéasting.Journal of the American Statistical
Association March 2010;105(489):92—-103.

Tastu J, Pinson P, Kotwa E, Madsen H, Nielsen HA. Spatigpbral analysis and modeling of short-term wind power
forecast errorsMnd Energy 2011;14(1):43-60.

Kou P, Gao F, Guan X. Sparse online warped gaussian gré@esind power probabilistic forecastindypplied
Energy August 2013;108:410-428.

Vaz A, Elsinga B, van Sark W, Brito M. An artificial neuratwork to assess the impact of neighbouring photovoltaic
systems in power forecasting in Utrecht, the NetherlaRdsewable Energy January 201685:631-641.

Bessa R, Trindade A, Miranda V. Spatial-temporal sotavgy forecasting for smart gridsEEE Transactions on
Industrial Informatics February 201511(1):232-241.

Wytock M, Kolter JZ. Large-scale probabilistic foretiag in energy systems using sparse gaussian conditional
random fieldsProceedings of the IEEE 52nd Annual Conference on Decision and Control (CDC), Firenze, lItaly,
2013.

Wind Energ. 0000; 00:1-21 © 0000 John Wiley & Sons, Ltd.
DOI: 10.1002/we
Prepared using weauth.cls



L. Cavalcante et al. Sparse Structures for Very Short-term Wind Power Forecasting

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Wytock M, Kolter JZ. Sparse gaussian conditional randimids: Algorithms, theory, and application to energy
forecasting. International Conference on Machine Learning (ICML 2013). JLMR Workshop and Conference
Proceedings, vol. 28, Atlanta, USA, 2013.

Tastu J, Pinson P, Madsen H. Multivariate conditionahyeetric models for a spatio-temporal analysis of shartite
wind power forecast error®roceedings of the European Wind Energy Conference (EWEC 2010), Warsaw, Poland,
2010.

Tastu J, Pinson P, Trombe PJ, Madsen H. Probabilistiecésts of wind power generation accounting for
geographically dispersed informatidiEEE Transactions on Smart Grid January 2014%(1):480—-489.

He M, Yang L, Zhang J, Vittal V. A spatio-temporal anatyapproach for short-term forecast of wind farm generation.
|EEE Transactions on Power Systems July 2014;29(4):1611-1622.

He M, Vittal V, Zhang J. A sparsified vector autoregressivodel for short-term wind farm power forecasting.
Proceedings of the 2015 |EEE Power & Energy Society General Meeting, Denver, CO, USA, 2015.

Dowell J, Pinson P. Very-short-term probabilistic wipdwer forecasts by sparse vector autoregresdiBBE
Transactions on Smart Grid 2015;1n Press.

Pinson P. Very-short-term probabilistic forecastifigind power with generalized logit-normal distributiodsurnal

of the Royal Statistical Society: Series C (Applied Satistics) August 201261(4):555-576.

Davis RA, Zang P, Zheng T. Sparse vector autoregressigeiimg 2012. ArXiv:1207.0520.

Tibshirani R. Regression shrinkage and selection \ealdkso.Journal of the Royal Satistical Society: Series B
(Statistical Methodology) 1996;58(1):267—288.

Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distrithajetimization and statistical learning via the alterngtin
direction method of multiplierdzoundations and Trends in Machine Learning 2011;3(1):1-122.

Hsu NJ, Hung HL, Chang YM. Subset selection for vectoogressive processes using LAS&omputational
Satistics and data Analysis March 2008;52(7):3645-3657.

Taieb SB. Machine learning strategies for multi-sthpaal time series forecasting. PhD Thesis, Universit Lilere d
Bruxelles, Belgium 2014.

Nicholson WB, Matteson DS, Bien J. Structured reguddign for large vector autoregressiofechnical Report,
Cornell University September 2014.

Davidson R, MacKinnon Econometric Theory and Methods. Oxford University Press: New York, 2003.

Lutkepohl HNew Introduction to Multiple Time Series Analysis. Springer: Berlin/New York, 2005.

Songsiri J. Sparse autoregressive model estimatidedaning granger causality in time seri@oceedings of the
38th |IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vancouver, BC, Canada,
2013.

Chartrand R, Wohlberg B. A nonconvex admm algorithm foug sparsity with sparse groug&oceedings of IEEE
International Conference on Acoustics, Speech, and Sgnal Processing (ICASSP), Vancouver, BC, Canada, 2013.
Diebold F, Mariano R. Comparing predictive accuralournal of Business and Economic Satistics July 1995;
13(3):253-263.

Wind Energ. 0000; 00:1-21 © 0000 John Wiley & Sons, Ltd. 21
DOI: 10.1002/we
Prepared using weauth.cls



